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Abstract—We consider thequery by multiple example problem  say that the sefx € X : p,(x) > t} contains samples that
where the goal is to identify database samples whose contentagrelikely to be generated by, .
is similar to a collection of query samples. To assess the |y contrast therelative content density has a different

similarity we use a relative content density which quantifies the . ¢ tati S that f th les(|
relative concentration of the query distribution to the database Interpretation. Suppose that some of the samplest irare

distribution. If the database distribution is a mixture of the 9generated by?, and the rest by another proceBs.,. Then
query distribution and a background distribution then it can P, is a mixture distribution
be shown that database samples whose relative content density
is greater than a particular threshold p are more likely to have P, = BP; + (1 — B)Pother, for some0 < 3 < 1.
been generated by the query distribution than the background d ith  th . hoi f h
distribution. We describe an algorithm for predicting samples an wit the appro_pnate choice ofp t _e set
with relative content density greater than p that is computation- {z € X : p(x) > p} contains samples that ansore likely to
ally efficient and possesses strong performance guarantees. Webe generated by’ than Py, In many applications the
also show empirical results for applications in computer network relative content density will be preferred over theontent
monitoring and image segmentation. density p,. However retrieval algorithms for theelative

. INTRODUCTION content densitynay be more complicated since this density

Consider the query by multiple exampleproblem Telies on both?, and P, instead of justr. _
where we are given a collection ofjuery samples We now mention a related problem whose formulation turns
Q=(q1,nqs), ¢ € X and a collection ofdatabase out to be identical. In this problem the raw data is assumed to
samples:X7— (;31 L ), @ € X, and asked to identify D€ Structured in a way that leads to a standard notion of floca
- Yty M)y 2 ’ . 8o el . .

members ofX that are similar in content to members of€dions” within the data. Examples include image data whose
Q. The data spacer’ will typically be a space of images local regions might correspond to small spatial windows, or
signals, documents, or feature vector representationsnef dime series data whose local regions might correspond td sma

of these data types. We define a similarity measure to bd€Poral windows. For this problem we are given a query
function on X that computes the similarity between a poinf@MPles and a database sampteand asked to identify local
z € X and the query). Assuming that the samples iy €9'0NS ofz that are similar (in content) to the local regions
and X are generated according to probability distributigps ©f ¢- If we defineX = (i1, &5, ...), &; € X be the collection

and P, respectively we consider using the following densitff local regions ofz, and@ = (qi, gz, ...) d; € X to be the
functions as similarity measures; collection of local regions of;, and assume data generating

« the content density, that quantifies the absolute con distributions ; and P, then we can define density-based

centration of P, and is given by the Radon-NikodymS'm"am'es thgt quantify thg absolute corllcentratlonlbjf',
derivative and the relative concentration df; to P; just as we did

. above. Applying a threshold to these density-based siitidar
pq = dP,;/du N . .
performs assegmentatiomf x into local regions that are similar
where is theu is the Lebesgue measure, and to the local regions of.

« therelative content density that quantifies the relative The common task in the formulations above is to identify
concentration ofP, to P, and is given by the Radon-the members ofY (or X) whose density value exceeds a
Nikodym derivative threshold. To accomplish this we solve a slightly more gaher

pi=dP,/dP problem called thedensity level detectiofDLD) problem
v where the goal is to identify the subset of the data spce
where we assume thdt, is absolutely continuous with where the density exceeds a threshold. For convenience we
respect tad P, (so thatp is well-defined). will develop solution methods for the relative content dgns

Members of X that fall into the high density regions @f, p with thresholdp, but it should be clear that these same

are also guaranteed to be close to a nontrivial fraction ef tmethods can be used for the other formulations as well.

samples in@, and sop, is analogous to common distance- To solve the DLD problem we design a real valued function

based similarity measures. With a suitable choicé we can f that approximates the s€p > p} with the set{f > 0}.



The quality of the approximation is assessed by the criterigrovide empirical estimates of the probabilities in (1) dimas
estimater using
s(f) = P:({f >0} & {p>p})
1 1 1

k n
where A denotes the symmetric difference. This criterioi(f) = 103 % Zl(f(qi) <0)+ % — Zl(f(xj > 0)
corresponds to the average number of mistakes madg, by tpri Tpni

v J
l.e. it represents the fraction of time thdtpredicts that @ \yhere(.) is the identity function that takes the valtevhen
sample is in the high density region when it is not, plus thes 4rgument is true an@otherwise. This estimate can be used
fraction of time it predicts that a sample is not in the high, yajidate a solutiorf, compare the performance of different
density region when it is. The design problem can be statgg|,tion methods, and select the so-called tuning paramete
as follows. that accompany solution methods.
Retrieval Function Design: Given ap > 0, query samples  The calibrated risk also allows us to consider non-density
(¢1,---,qx) ~ P,, and input sampleézy, ..., z,,) ~ P, design based solution methods, in particular methods that choose
a function f such thats(f) is small. f to minimize » more directly (e.g. by minimizing® or a
psurrogate version). The method proposed in [1], and the one
a@dopted here, is based smpport vector machineéSVMs).
Simply put, the SVM method choosegsfrom areproducing
fkernel Hilbert spac€RKHS) of functions# to minimize the
surrogate criterionk given by

Remark: A close relationship exists between the DLD pro
lem above and the binary classification problem. In the lgin
classification problem we assume a data generating distibu
P, =pi1Py1 + poPro and we seek a real valued functio
f that minimizes the binary classification erreff)

p1Pea(f < 0) + poPro(f > 0). In ([1], Section 5) it is 1 1k

shown that if P, = 8P, + (1 — 3)Ppther then withp = % R(f) := )\||f||§r + <1+> z Z[l — f(qi)]+

any f that minimizess also minimizes the binary classification P i=1 )
errore(f) for the binary classification problem whepe = 3, p 1 <

po = 1— 3, Py = P, and P,y = Poper. Thus, the 1+, 52[1+f(%)]+

algorithms developed in this paper are directly applicable
binary classification problems whose input data consists Where[-] is a clipping operation that givels]; = a when
labeled samples from one class and unlabeled samples fron> 0 and 0 otherwise. The criterionz is obtained by
the mixture. These problems are often referred tteasning replacing the nonconvex with a convex anctalibrated (see
from only positive and unlabeled dataPU) problems. [2]) r. given by

II. SOLUTION METHODS re(f) :ﬁ Pq ([1 - f(q)h) +

Numerous solution methods might be considered for com- P p ([1 + f()] )
puting f, including methods based on various forms of density 1+4+p X Vv )

estimation, but first we consider the issue of validating tr}ﬁen forming the empirical estimaté. of r. and adding a
c

performance off independent of how it is computed. SinC‘?egularization term\|| f||% to control the finite sample effects.
P, and P, (and thereforey) are generally unknown there is no g tions to (2) take the form [3]

hope of computing the performansef) directly. Furthermore .

there appears to be no reliable way of estimatiqg) from B -

empirical data since we have no ground truth for the samples F)= Z:o“”k(" g) + Z:O‘“”*ik(" zi)

in Q and X (i.e. we do not know if their density values exceed o e

p). However, a general method for validating the performan¥éherek(-,-) is the kerndel function for the RKHS. When
of f without computing or estimating( f) has been describedthe data space i&” C R® a common choice fok(-, ) is the

in [1]. It is based on the risk function defined by Gaussian RBF kernel
1 k(x1,x2) = exp(—ol|z1 — x2|?).
") = e Plf <0) + T2 Pe(7 >0 (@) ra) = eploln =)
P P With this choice the SVM method method has been shown

Under mild assumptions on the densijtyit is possible to to be universally consistent [1]. Furthermore, under mild
show that the risk is calibratedto s [1], i.e. » and s obey assumptions on the distributions (similar to the assumptio

a relationship that tightly couples their behavior. The atxarequired for the calibration of to s) the SVM method has
relationship is described in [1], but here it suffices to sdyeen shown to possess fast rates of convergence to the Bayes
that this relationship implies that all functions that miize »  optimal solution [4].

also minimizes. Furthermore, all functions thapproximately  Practical algorithms for (approximately) minimizing are
minimize r alsoapproximatelyminimize s. Thus, we can use common, but few are guaranteed to run in polynomial time.

r instead ofs as a performance criterion. This is importantWe employ a polynomial time algorithm from [5], [6]. This
because, unlikes, the riskr can be estimated from samplealgorithm is a so-called decomposition algorithm that clees

data. In particular we can use the samplesinand X to for the optimala using an iterative procedure that optimizes



two coefficients at a time until a stopping condition thain our experiments the flow samples are represented by finite
guaranteesk(f) — miny R(f) < e is satisfied. Assuming a dimensional feature vectors derived from tb&cket sizeand
data spacet¥ C R? and applying the run time analysis inwait timeflow sequences. Example sequences are shown in the

[5] to the SVM formulation here gives the following run timetable below where the packet sizes are in bytes, weight times

bound are in milliseconds, and the packet direction (i.e. hosth@nt
(n+k) A2 or client-to-host) is encoded by the sign of the number.
O<(n+k)2 d+ + log ) :
Aek? (n+k) Packet Sizes 132, -122, 43, 28, -27, 23
A complete algorithm that builds on the above algorithm Wait Times | -0.081, 0.003, -0.183, 0.002

and automatically chooses the regularization parametard We compare the SVM method with a conventiosanature
kernel widtho is described and analyzed in [7]. A version ofnatching method which designates a sample € X to
this algorithm is used in the experiments in this paper.  be “similar’ to @ if its Euclidean distance to one of the
To validate our results we compute empirical estimates ofsignature samplefrom @ is below a threshold. To provide
on a “hold out” data set. We also assess performance in tersits appropriate tuning for different values pf the threshold
of the following components of. t is chosen to minimize the risk. The signature samples are
e Po(f < 0) is called theQ-missed detection ratand chosen as a random subsetfand the remaining samples in
represents the fraction ok samples generated hi, @ are used to estimate the risk choose the threshold and
but not retrieved, and estimate the)-missed detection and retrieval rates. Since the
o Px(f > 0) is called theretrieval rateand represents theregions identified by placing hyperspheres of radiwound
rate at which samples frodi are predicted to be similar the signature samples provides a crude approximation to the
to Q. high density regions o, this signature matching method is
To assess performance we plot the Q-detection rate (i.e. &nalogous to retrieval based oontent densityas opposed to
the Q-missed detection rate) versus the retrieval ratp s relative content densily

varied over a range of values (similar to an ROC curve). ~ The performance results are shown in Figures 1 and 2.
The lower risk values in Figure 1 tell us that the SVM
lIl. EXPERIMENTS method is doing a much better job at minimizing the mistake

We now describe experimental results for two applicationste (sincer is calibrated tos) for all values of p. The
computer network monitoring, and image segmentation. Tkaperiority of the SVM method is even more pronounced in
network monitoring application is an instance of theery Figure 2. For example this figure tells us that if we want to
by multiple exampleproblem and the image segmentatiowletect approximately 90% of the samples generate® othe
application corresponds to a problem where identify lo- retrieval rate for the SVM method is approximately 4 orders
cal regions with similar contentin both cases we compareof magnitude smaller than the signature match method.
solutions obtained with the SVM method in Section Il against
solutions obtained using a more conventional approach.

A. Network Monitoring SVM —x—

a _ _ _ 0.1 k signature match---=----
In the network monitoring problem our goal is to identify Bl R
a particular type of activity irencryptednetwork flows. In
the experiments below we attempt to identify flows assodiate 0.01
with the “CHAT” protocol, but our approach applies to other -
types of activity as well. When a flow ignencryptedit is
relatively easy to determine the flow type by examining the 0.001

flow packet contents. However this is useless for encrypted
flows and so determining their flow type is a difficult problem.

We solve this problem using guery by multiple example 0.0001 : '
approach where: 1 10 100 1000
o The database samples = (z1,...,z,) correspond to p

encrypted network flows. In our experiments we have 4 _ .
ig. 1. Risk estimates for methods designed to extract CHATsflinom
100,027 encrypted flows from a busy computer networEncrypted network traffic.
« The query sample® = (¢1,...,qx) correspond to flows
of a known activity type. In our experiments we have .
3450 CHAT flows from unencrypted traffic on the sam&. SAR Image Segmentation

busy network. Synthetic aperture radar (SAR) imaging has become an
1 _ , important surveillance tool for monitoring man—-made tésge
Network flows are sequences of packets with well-defined stad end

points, and are the fundamental data unit processed by magbrkeanalysis such as buildings, m.anufactur.ing fajCi"tie.s’ and_ militashi-
tools. cles. The segmentation task is to identify regions of a SAR



random subset of 10,383 of these regions to form the query

_ 'SVM —— setQ = (¢, ..., d1osss), ¢ € R0, We show results against

o 1 signature match-—-=--- | the deployment SAR image in Figure 7. This image contains
= 18 military vehicles (3 of them are T-72 tanks, 6 of them are
E e other tanks) and 7 corner reflectors. A random subset of 81,67
-% ' local 10-by-10 pixel windows were extracted from this image
Q and used in the SVM design df.

3 The SVM solution is compared to a widely used SAR pixel
< classifier, thecell averaging constant false alar(CA-CFAR)

43 detector [9]. This detector computes the function
o
le-05 0.0001 0.001 0.01 0.1 flij) = (W) -7

retrieval rate . . . . .
at each pixel locationi,j) in the image wherex(i, j) is

Fig. 2. Estimated performance curves for methods designedracecHAT ~ the pixel value at locatiorii, j), /i(i,j) and (i, ;) are the
flows from encrypted network traffic. sample mean and standard deviation of pixel values from a
stencil surrounding locatioffi, ) as illustrated in Figure 4,
and 7 is a threshold chosen to control tfi@ise alarm rate
image that are likely to contain targets of interest. This {ge. the rate at which clutter pixels are labeled as target
a challenging task because optimal segmentation is thoughle|sy. Pixel locations wheref > 0 are labeled as target.
to require prior knowledge of both targets and clutter, bifince this approach identifies pixel values in the complémen
this knowledge is often not available because the deploygfthe high density regions of the clutter density it is agalas
environments are not known ahead of time. We describe g\retrieval based omontent densityas opposed taelative
approach that only requires target knowledge ahead of tim@ntent density To provide a basis for comparison we chose
and (implicitly) gathers clutter informatioin the field at the CFAR threshold- to minimize the empirical riskz. In

the time of deployment from the deployed SAR image thais way the threshold varies automatically wjth
contains a mixture of target and clutter. In particular we

identify local regions of the deployed SAR image that are

similar in content to the local regions of a target rich query stencil
set constructed ahead of time. Using the results in [1] we can -

show that our approach provides optimal segmentation witho *\

the need for ground truth clutter information (see the rémar Sl

at the end of Section I). Furthermore the solution is tadore
to the statistics of each individual deployment.

The segmentation task is performed by a pixel classjfier
that labels each pixel in the deployment image as eitheetargig. 4. lllustration of the stencil region used to estimatgtter statistics for
or clutter, and then combines the target pixels to form tHge CA-CFAR detector.

regions of interest. Our experiment uses one foot resaiptio h ; | h - 46 h
single—look, HH—polarized, X—band SAR magnitude data col- The performance results are shown in Figures 5 and 6. Bot

lected at a 15 degree depression angle as a part of DAR JAITES S‘,JPF’O” the conclu;ion that the SVM method is superio
MSTAR program [8]. The target is a T-72 tank. To form th@! minimizing the DL_D m|_st<'_:1ke r_att_a for aI_I values pf(and
query set we selected 274 target images corresponding to h]e_refore_ superior at |d_ent|f_y|ng similar feg"?”s)- Thessults

72 tank imaged at 274 different aspect angles over the ra & confirmed visually in Figure 7 wherg I IS easy to see that
0 to 360 degrees. Each target image was hand labeledt& SVM method does a better job at identifying “on target”

shown in Figure 3. Local “target regions” were representéﬂxels and suppressing false alarms in the clutter regions.
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